千百年来,人类都是通过可见光去观测世界和天体,通过光学望远镜,人们发现了银河系,了解到月球表面并不润滑等等。
经过对世界的观测,人类了解到世界是在不断膨胀的,这引发暗能量存在的假定,这一系列光辉的成果都是因为光学望远镜的存在。
哈勃望远镜的呈现使人类对宇宙的观测愈加深入,之前认为是荒芜的当地发现了很多星系。这时,人类才反响过来,本来宇宙是由不同的星系组成的。
用光学望远镜观测世界,有几个比较巧的现象。一是人类的传感器“眼睛”刚好在可见光波段具有感知能力;二是太阳这类恒量天体在可见光波段宣布的能量比较强;三是厚厚的大气层在这个波段是透明的。
所以我们好像是理所应当的应该用光学望远镜来观测,但其实厚厚的大气层还隐藏着另外的波段:无线电窗口,但人类不具备这个波段的感知能力,这一波段主要靠射电望远镜来观测。
偶然的机会 人类发明了射电望远镜
既然人类不具备这个波段的感知能力,那么人类是如何发现这个波段的呢?比较有意思,Karl Jansky既不是天文学家也不是天文爱好者,却在偶热的机会发现了这一波段。
当时有线电话刚刚开始推广,经常会受到信号干扰,于是贝尔实验室就委托他去查明原因。
Karl Jansky 建造了一台天线,通过长时间的观测,他发现干扰来源是雷暴天气,同时他又发现了一个非常稳定但又比较弱的干扰信号,24小时一个周期,每天到达的时间都非常固定:比前一天提前4分钟。
经过一年的观测,他猜测这个信号源自银河系中心,他把这些研究成果整理发表在了美国的一本无线电工程学报上面,这本来是一个领域的开篇之作,却就这样发表了,从这里也能看出,Karl Jansky是一个对天文没多少兴趣的人。
后来,另一位雷达工程师雷柏,在大学的时候看到了Karl Jansky的研究成果,认为非常有意思,便自掏腰包在家里后花园设计出了第一台真正意义上的射电望远镜,用现在的眼光去看,这台射电望远镜堪称完美,今天所有的射电望远镜都没脱离这个框架。
通过长时间的观测,雷柏印证了Karl Jansky的研究结论,这个干扰信号确实来自于银河系中心,不过大家并没有忘记Karl Jansky的贡献,还是尊他为射电天文学的鼻祖。
综合口径技术让射电望远镜 “如虎添翼”
射电天文学刚出现的时候,并没有得到大家的关注,其核心的原因是,它在分辨率上天生有缺陷。
衡量一台望远镜的好坏主要有两个指标,一个是灵敏度,一个是分辨率。直到M.Ryle发明了综合口径的技术,其基本原理是:用相隔两地的两架射电望远镜接收同一天体的无线电波,两束波进行干涉,其等效分辨率最高可以等同于一架口径相当于两地之间距离的单口径射电望远镜,因为此项发明,他获得1974年诺贝尔物理学奖。
自此,射电望远镜的分辨能力得到大大提高,分辨率甚至比光学望远镜还要高,今年首张黑洞照片问世,背后所利用的技术就是综合口径技术。
自此,射电天文就得到蓬勃发展。1957年,英国人已经把望远镜口径做到76米,1961年,人类在南半球建造了第一台射电望远镜,迄今发现的近三千颗脉冲星中,一半都是这台望远镜发现的。2000年,美国建造了口径为100米的望远镜。
从雷柏创建的第一台直到现在,射电望远镜的发展历史其实就是人类追寻灵敏度的历史。口径越大,观测的灵敏度就越高。只有这样,人类才能观测到更遥远的宇宙星系,有助于科学家分析宇宙的演化历史。
但自从1972年德国人把口径做到100米以后,射电望远镜的口径便停滞不前,这也表明,在材料的制作工艺没有得到跳跃式发展前,很难突破百米口径。
难道百米口径是个极限吗?我们真的无法突破这个极限吗?1962年,美国的大耳朵望远镜进行了尝试,但并未成功。
怎么才能建造更大的射电望远镜
相关文章